
Lecture 7
Query planning
and development

Dr Fintan Nagle
f.nagle@imperial.ac.uk

mailto:f.nagle@imperial.ac.uk


Imperial means Intelligent BusinessImperial College Business School 2

Reading

Video lectures:

7.2.2 - Loading data with pg_dump and pg_restore.mp4
7.3.1 - Importing the movies database.mp4

8.2.1 - Types of interview questions.mp4
8.2.2 - SQL interviews (Guest speaker).mp4

Postgres documentation on indexes: 
https://www.postgresql.org/docs/10/static/sql-createindex.html
Postgres documentation on EXPLAIN: 
https://www.postgresql.org/docs/10/static/sql-explain.html
Postgres documentation on ANALYZE: 
https://www.postgresql.org/docs/10/static/sql-analyze.html

https://www.postgresql.org/docs/10/static/sql-createindex.html
https://www.postgresql.org/docs/10/static/sql-explain.html
https://www.postgresql.org/docs/10/static/sql-analyze.html


Imperial means Intelligent BusinessImperial College Business School 3

Reading

SEARCH and CYCLE keywords allowing recursive queries:
https://www.depesz.com/2021/02/04/waiting-for-postgresql-14-
search-and-cycle-clauses/

Why SELECT * can be bad for performance
https://tanelpoder.com/posts/reasons-why-select-star-is-bad-
for-sql-performance/

https://www.depesz.com/2021/02/04/waiting-for-postgresql-14-search-and-cycle-clauses/


Imperial means Intelligent BusinessImperial College Business School 4

The structure of a query
A simple query:

• SELECT
• FROM
• WHERE
• ORDER BY
• LIMIT

A more complex query:

• SELECT
• FROM
• JOINs, each with an ON
• WHERE
• GROUP BY
• ORDER BY
• LIMIT



Imperial means Intelligent BusinessImperial College Business School 5

What do rows represent?
Rows can represent:

• People
• Real objects
• Imaginary objects
• Concepts
• Events (sales, rentals)
• Contracts
• Facts
• Debts
• … etc



Imperial means Intelligent BusinessImperial College Business School 6

Getting to know a new database

• Find out what all the tables are called
(here we only have one)

• In each table, look at the rows: what do 
they represent?

• In most tables, each row represents an 
entity, person, or object or some kind
(but this is not always true)

• In each table, look at the columns: what do 
they represent?

• Keep the tables, rows and columns (the 
schema) where you can see them easily

Columns: attributes (fixed for each table)

R
ow

s:
 e

nt
iti

es
 o

r o
bj

ec
ts

 (a
ny

 n
um

be
r o

f t
he

se
)



Imperial means Intelligent BusinessImperial College Business School 7

How to write a query
1. Which tables contain the information you need?

Check you understand what all the tables are for.

2. What result do I want exactly?
What columns are present in the result?
Approximately how many rows do you expect to return?
What does each row represent?

3. What intermediate tables do I need to construct along the 
way?
Should I use subqueries, CTEs or views?



Imperial means Intelligent BusinessImperial College Business School 8

The development loop



Imperial means Intelligent BusinessImperial College Business School 9

Always check the number of rows

Whenever you run a query, note the number of rows.

• Is it what you expect?
• Has the row number increased or decreased?



Imperial means Intelligent BusinessImperial College Business School 10

Splitting up queries

• There are three ways to split up queries:

• Subqueries
Smaller queries nested within the main query.

• Common Table Expressions (CTEs) 
using the WITH keyword
Smaller queries placed at the top of the main query.

• Views
Saved queries which you can access as if they were tables.



Imperial means Intelligent BusinessImperial College Business School 11

Developing with subqueries

If you are going to use a subquery, start by taking your original 
query, wrapping it in a subquery and selecting everything. Then 
move forwards.

Putting the opening and closing brackets on their own on separate 
lines can help; or you can indent:

SELECT * FROM
(
SELECT MAX(rental_date) FROM rental
WHERE staff_id = 2
) AS most_recent

SELECT * FROM
(SELECT MAX(rental_date) FROM rental
WHERE staff_id = 2
) AS most_recent



Imperial means Intelligent BusinessImperial College Business School 12

Revenue example



Imperial means Intelligent BusinessImperial College Business School 13

Revenue example (Northwind)

Do a month-by-month analysis of revenue growth.



Imperial means Intelligent BusinessImperial College Business School 14

Revenue example (Northwind)

Do a month-by-month analysis of revenue growth.

We start by working our the price of all order details and joining to the 
orders table.

SELECT *, (order_details.UnitPrice * order_details.Quantity) -
order_details.Discount AS price 
FROM orders 
INNER JOIN order_details ON orders.orderID = order_details.orderID



Imperial means Intelligent BusinessImperial College Business School 15

Revenue example (Northwind)

Now we can use this as a subquery orders_with_price

SELECT * FROM
(

SELECT *, (order_details.UnitPrice * order_details.Quantity) -
order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID

) as orders_with_price



Imperial means Intelligent BusinessImperial College Business School 16

Revenue example (Northwind)

Now we can GROUP BY to give us the total price of each order.

SELECT orderid, orderDate, SUM(price) FROM

(SELECT order_details.orderid, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID) as priced_orders

GROUP BY orderid, orderDate



Imperial means Intelligent BusinessImperial College Business School 17

Revenue example (Northwind)

We can extract the month (as a number) with date_part:

date_part('month',orderdate)

If we want to do a year-on-year revenue analysis, we can't ORDER BY 
this month column as it doesn't contain the year, so each value of 
month makes reference to multiple years.
date_part only extracts the month.

How do we group by month AND year?



Imperial means Intelligent BusinessImperial College Business School 18

Revenue example (Northwind)

The date_trunc function sets all smaller parts of the date to zero, so 
the year is kept, and all dates within a particular month and year will 
be set to the same value. This means they can be used with GROUP 
BY.

date_trunc(‘month’, date)

sets everything smaller than month to its smallest value;
here, sets all dates in August to August 1, 00h 00m 00s 00ms



Imperial means Intelligent BusinessImperial College Business School 19

Build up a large query

Let's add our year_and_month column:

Start with just the priced orders:

SELECT order_details.orderid, date_trunc('month', OrderDate) as
year_and_month, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID



Imperial means Intelligent BusinessImperial College Business School 20

Building up a large query

Make this bit into a subquery – add the brackets and alias:

(
SELECT order_details.orderid, date_trunc('month', OrderDate) as
year_and_month, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID
) AS priced_orders

(this won't run yet – we need to SELECT from the subquery first)



Imperial means Intelligent BusinessImperial College Business School 21

Building up a large query

Now we can SELECT from the subquery and do the GROUP BY:

SELECT orderid, orderDate, year_and_month, SUM(price)
AS order_price
FROM
(

SELECT order_details.orderid, date_trunc('month', OrderDate) as
year_and_month, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID

) as priced_orders
GROUP BY orderid, orderDate, year_and_month

Trick: as orderDate and year_and_month are the same for each order, adding them 
to the GROUP BY won't affect the groups, but will let us SELECT them.

We still want each row to represent an order – we're not grouping by 
year_and_month yet.



Imperial means Intelligent BusinessImperial College Business School 22

Building up a large query

Finally, we use another subquery to add a window function for a 
running total:

SELECT *, SUM(order_price) OVER(ORDER BY orderdate)
FROM
(

SELECT orderid, orderDate, year_and_month, SUM(price)
AS order_price
FROM
(

SELECT order_details.orderid, date_trunc('month', OrderDate) as
year_and_month, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID

) as priced_orders
GROUP BY orderid, orderDate, year_and_month

) AS orders ORDER BY orderdate



Imperial means Intelligent BusinessImperial College Business School 23

Building up a large query

Finally, save as a view:

CREATE OR REPLACE VIEW view_orders AS
(
SELECT *, SUM(order_price) OVER(ORDER BY orderdate)
FROM

(SELECT orderid, orderDate, year_and_month, SUM(price)
AS order_price
FROM

(SELECT order_details.orderid, date_trunc('month', OrderDate) as
year_and_month, OrderDate, (order_details.UnitPrice *
order_details.Quantity) - order_details.Discount AS price 
FROM orders 
INNER JOIN order_details
ON orders.orderID = order_details.orderID

) as priced_orders
GROUP BY orderid, orderDate, year_and_month
) AS orders ORDER BY orderdate
)



Imperial means Intelligent BusinessImperial College Business School 24

Revenue example (Northwind)

Now we have more power.

We can calculate monthly totals using our view view_orders:

SELECT SUM(order_price),
year_and_month
FROM view_orders
GROUP BY year_and_month



Imperial means Intelligent BusinessImperial College Business School 25

Revenue example (Northwind)

We can also calculate the running total of monthly revenues:

SELECT *, SUM(order_price) OVER (ORDER BY
year_and_month)
FROM view_orders



Imperial means Intelligent BusinessImperial College Business School 26

Revenue example (Northwind)

We can calculate year-on-year differences using LAG(sum,12), which 
looks 12 rows ago (1 year ago, as there is 1 row per month)

LAG: look at previous rows
LEAD: look at following rows

LAG(col, 12): look 12 rows ago
LEAD(cl, 12): look 12 rows ahead

SELECT *, month_revenue - lagged AS year_increase
FROM

(SELECT *, LAG(month_revenue,12) OVER(ORDER BY
year_and_month) AS lagged 
FROM

(SELECT SUM(order_price) AS month_revenue, year_and_month
FROM view_orders GROUP BY year_and_month
)AS t 

)AS t2 



Imperial means Intelligent BusinessImperial College Business School 27

Query optimisation

Can we make this any simpler?

• We don't need to join to the orders table until we need the 
order date

• We could do a GROUP BY in the innermost query without 
having to use a subquery

• priced_orders seems like a very useful intermediate table; 
we could save it as a view.

Note that we could have saved any of the intermediate results 
as views (with sensible names!) and selected from them.



Imperial means Intelligent BusinessImperial College Business School 28

Query optimisation

Looking at the query plan

EXPLAIN: show query plan

EXPLAIN ANALYZE: show query plan 
as well as executing and timing query

https://www.postgresql.org/docs/9.4/using-explain.html

EXPLAIN ANALYZE SELECT *
FROM view_orders



Imperial means Intelligent BusinessImperial College Business School 29



Imperial means Intelligent BusinessImperial College Business School 30

Query optimisation

What takes a long time?

• Sequential scanning through records on the disk
to find a particular record
or to find a record matching a criterion
(can use an index to avoid having to do this)

• Joins (checking the join condition, producing the intermediate table)

Bear in mind that operations often multiply.

• Cross joining a table with 10 rows to itself: 100 rows in the result
• for a table of 100 rows: 100,000 rows in the result



Imperial means Intelligent BusinessImperial College Business School 31

Recent rental example



Imperial means Intelligent BusinessImperial College Business School 32

Recent rental example (dvdrental)

How do we get the most recent rental processed by a member 
of staff?

SELECT * FROM rental 
ORDER BY rental_date DESC
LIMIT 1

However, what happens if there are two most recent rentals for 
that member of staff, happening at the same time?



Imperial means Intelligent BusinessImperial College Business School 33

Recent rental example (dvdrental)

How do we get the most recent rental processed by a member 
of staff?

SELECT * FROM rental 
ORDER BY rental_date DESC
LIMIT 1

However, what happens if there are two most recent rentals for 
that member of staff, happening at the same time?

One of them will be nondeterministically missed out.



Imperial means Intelligent BusinessImperial College Business School 34

Recent rental example (dvdrental)

How do we get both of them?

We can easily get the date of both of them: this query will work 
even if many records are tied for most recent.

SELECT MAX(rental_date) FROM rental
WHERE staff_id = 2

What identifies these records?

• staff ID
• date

This is all we need to uniquely identify these records.



Imperial means Intelligent BusinessImperial College Business School 35

Recent rental example (dvdrental)

So, we can take this data and join it to rentals to get the rest of 
the information.

First wrap in a subquery and select everything:

SELECT * FROM
(
SELECT MAX(rental_date) FROM rental
WHERE staff_id = 2
) AS most_recent



Imperial means Intelligent BusinessImperial College Business School 36

Recent rental example (dvdrental)

Now we can join to the rentals table:

SELECT * FROM
(
SELECT MAX(rental_date) AS max_date FROM rental
WHERE staff_id = 2
) AS most_recent
INNER JOIN rental
ON most_recent.max_date = rental.rental_date

However this joins rentals which don't belong to staff ID 2!



Imperial means Intelligent BusinessImperial College Business School 37

Recent rental example (dvdrental)

So we restrict to staff ID 2:

SELECT * FROM
(
SELECT MAX(rental_date) AS max_date FROM rental
WHERE staff_id = 2
) AS most_recent

INNER JOIN rental
ON most_recent.max_date = rental.rental_date
AND rental.staff_id = 2

Note that we need the restriction in the subquery too so that 
we apply MAX to the right employee's rentals.



Imperial means Intelligent BusinessImperial College Business School 38

Recent rental example (dvdrental)

This could also be done with WHERE:

SELECT * FROM
(
SELECT MAX(rental_date) AS max_date FROM rental
WHERE staff_id = 2
) AS most_recent

INNER JOIN rental
ON most_recent.max_date = rental.rental_date
WHERE rental.staff_id = 2

There seems to be no difference in performance.



Imperial means Intelligent BusinessImperial College Business School 39

Recent rental example (dvdrental)

What about seeing the most recent rental for all staff?

First we get the most recent rental for each member of staff:

SELECT staff_id, MAX(rental_date)
FROM rental
GROUP BY staff_id

(this will work no matter how many staff there are)



Imperial means Intelligent BusinessImperial College Business School 40

Recent rental example (dvdrental)

Wrap in a subquery and give sensible names:

SELECT * FROM
(
SELECT staff_id, MAX(rental_date) AS last_date
FROM rental
GROUP BY staff_id
) AS last_dates



Imperial means Intelligent BusinessImperial College Business School 41

Recent rental example (dvdrental)

Wrap in a subquery and give sensible names:

SELECT * FROM
(
SELECT staff_id, MAX(rental_date) AS last_date
FROM rental
GROUP BY staff_id
) AS last_dates



Imperial means Intelligent BusinessImperial College Business School 42

Recent rental example (dvdrental)
Now join the last_dates table to the rentals table:

SELECT * FROM
rental
INNER JOIN

(
SELECT staff_id, MAX(rental_date) AS last_date
FROM rental
GROUP BY staff_id
) AS last_dates

ON rental.staff_id = last_dates.staff_id
AND rental.rental_date = last_dates.last_date

This shows all most recent rentals (no matter how many) for all 
staff.



Imperial means Intelligent BusinessImperial College Business School 43

Recent rental example (dvdrental)
Finally, we tidy up by joining to inventory and then film so we 
can get the film title, and restrict the columns.

SELECT last_dates.staff_id, last_dates.last_date, film.title FROM
rental
INNER JOIN

(
SELECT staff_id, MAX(rental_date) AS last_date
FROM rental
GROUP BY staff_id
) AS last_dates

ON rental.staff_id = last_dates.staff_id
AND rental.rental_date = last_dates.last_date
INNER JOIN inventory
ON rental.inventory_id = inventory.inventory_id
INNER JOIN film
ON inventory.film_id = film.film_id



Imperial means Intelligent BusinessImperial College Business School 44

CSV files



Imperial means Intelligent BusinessImperial College Business School 45

CSV files

Comma-separated-value files are one of the most common 
formats for data exchange. As a data analyst, CSV files are a 
core part of importing and exporting data.

CSV files are separated into lines by the carriage return 
character.

The delimiter is what splits up a line into cells. Usually it is the 
comma; the tab character (invisible) can also be used, or you 
can specify a custom delimiter. The delimiter must not appear 
in the data or errors will result.

There is often a header row with column titles.



Imperial means Intelligent BusinessImperial College Business School 46

CSV files



Imperial means Intelligent BusinessImperial College Business School 47

CSV files

Here quotes are used around every value, but this is not 
necessary.

The comma is used to delimit columns.
The carriage return (invisible) delimits rows.



Imperial means Intelligent BusinessImperial College Business School 48

CSV files
The COPY command loads a CSV file into a table which 
has already been created.

DELIMITER specifies the column delimiter (symbol 
between columns); usually it is comma or tab.

CSV HEADER says that there is a header row (the first 
row) which should be ignored.

COPY movie FROM
'/Users/fintan/Dropbox/Imperial/Databases Online 
MBA/files/movie_metadata.csv' 
DELIMITER ',' CSV HEADER;



Imperial means Intelligent BusinessImperial College Business School 49

CSV files
If the COPY command does not work, try the \copy
command.

COPY: SQL command (use in psql or pgAdmin)

\copy: psql command; use only within psql.
\copy has more power and can often resolve 
permissions issues with COPY.



Imperial means Intelligent BusinessImperial College Business School 50

CSV files
Before loading a CSV file you need to

• have a database ready (make a new one with CREATE 
DATABASE)

e.g. CREATE DATABASE kennels

• have a table ready (make a new one with CREATE 
TABLE)

e.g. CREATE TABLE dogs (ID integer, name text, breed 
text)

Do not load any CSV files onto the Imperial database 
server. Do this only on your own machine.



Imperial means Intelligent BusinessImperial College Business School 51

Backing up with pg_dump

pg_dump dumps your database as a single file.

pg_restore loads a dump file back into the Postgres server as a database.

These are both command line tools like psql, and should be on your PATH.

There are two formats:
• Dump as SQL (default) – here you can open and read the SQL file
• Dump as Postgres binary format (--format c)



Imperial means Intelligent BusinessImperial College Business School 52

Backing up with pg_dump
Dump as SQL:

pg_dump dvdrental > dvdrental_dump.sql

Load as SQL:

psql -d shakespeare -f shakespeare.sql

Dump in Postgres binary format:

pg_dump dvdrental --format c

Restore Postgres binary format:

pg_restore -h localhost -U postgres -v -d 
shakespeare shapespeare.pgdump

Dump as CSV:

COPY film TO '/Users/fintan/film.csv' DELIMITER ',' CSV HEADER;



Imperial means Intelligent BusinessImperial College Business School 53

Loading .sql files
A database can be loaded from an .sql file by using the –f option with psql
(process file):

CREATE DATABASE shakespeare; (run this in psql, it's an SQL 
command)

psql -d shakespeare -f shakespeare.sql

pg_dump dvdrental --format c

pg_restore -h localhost -U postgres -v -d shakespeare
shakespeare.pgdump

Export as CSV:
COPY film TO '/Users/fintan/film.csv' DELIMITER ',' CSV HEADER;



Imperial means Intelligent BusinessImperial College Business School 54

Interview questions



Imperial means Intelligent BusinessImperial College Business School 55

Attacking an interview question
• Read and understand the question completely and clearly. Do not move 

to the next stage until you are sure you understand what the question is 
asking.

• Look at the schema (draw out an entity-relationship diagram if there isn’t 
one available) and think about where the information you need is to be 
found. Which tables is it in?

• Think about how to combine the required information back together to get 
the result. Which language features will you require?

• Build up the query in stages.

• If stuck, go through language features and imagine whether they can help 
you. Joins? GROUP BY and aggregate functions? Window functions? 
WITH/CTEs? Subqueries?



Imperial means Intelligent BusinessImperial College Business School 56

Attacking an interview question

• Explain your thought processes as you go along. Mention 
concepts that you understand.

• Do not name-drop concepts which you don’t understand fully.


